Infall of planetesimals onto growing giant planets: onset of runaway gas accretion and metallicity of their gas envelopes
نویسنده
چکیده
We have investigated the planetesimal accretion rate onto giant planets that are growing through gas accretion, using numerical simulations and analytical arguments. We derived the condition for gap opening in the planetesimal disk, which is determined by a competition between the expansion of the planet’s Hill radius due to the planet growth and the damping of planetesimal eccentricity due to gas drag. We also derived the semi-analytical formula for the planetesimal accretion rate as a function of ratios of the rates of the Hill radius expansion, the damping, and planetesimal scattering by the planet. The predicted low planetesimal accretion rate due to gap opening in early gas accretion stages quantitatively shows that ”phase 2,” which is a long slow gas accretion phase before onset of runaway gas accretion, is not likely to occur. In late stages, rapid Hill radius expansion fills the gap, resulting in significant planetesimal accretion, which is as large as several M⊕ for Jupiter and Saturn. The efficient onset of runaway gas accretion and the late pollution may reconcile the ubiquity of extrasolar giant planets with metal-rich envelopes of Jupiter and Saturn inferred from interior structure models. These formulae will give deep insights into formation of extrasolar gas giants and the diversity in metallicity of transiting gas giants. Subject headings: planetary systems: formation – solar system: formation
منابع مشابه
Planetesimal Accretion onto Growing Proto-Gas-Giant Planets
The solar and extra solar gas giants appear to have diverse internal structure and metallicities. We examine a potential cause for these dispersions in the context of the conventional sequential accretion formation scenario, which assumes the initial formation of cores from protoplanetary embryos. In principle, gas accretion onto cores with masses below several times that of the Earth is suppre...
متن کاملOn the formation time scale and core masses of gas giant planets
Numerical simulations show that the migration of growing planetary cores may be dominated by turbulent fluctuations in the protoplanetary disk, rather than by any mean property of the flow. We quantify the impact of this stochastic core migration on the formation time scale and core mass of giant planets at the onset of runaway gas accretion. For standard Solar Nebula conditions, the formation ...
متن کاملQuantifying orbital migration from exoplanet statistics and host metallicities
We investigate how the statistical distribution of extrasolar planets may be combined with knowledge of the host stars’ metallicity to yield constraints on the migration histories of gas giant planets. At any radius, planets that barely manage to form around the lowest metallicity stars accrete their envelopes just as the gas disk is being dissipated, so the lower envelope of planets in a plot ...
متن کاملTowards a Deterministic Model of Planetary Formation I: a Desert in the Mass and Semi Major Axis Distributions of Extra Solar Planets
In an attempt to develop a deterministic theory for planet formation, we examine the accretion of cores of giant planets from planetesimals, gas accretion onto the cores, and their orbital migration. We adopt a working model for nascent protostellar disks with a wide variety of surface density distributions in order to explore the range of diversity among extra solar planetary systems. We evalu...
متن کاملPlanet Formation with Migration
In the core-accretion model, gas-giant planets form solid cores which then accrete gaseous envelopes. Tidal interactions with disk gas cause a core to undergo inward type-I migration in 10 to 10 years. Cores must form faster than this to survive. Giant planets clear a gap in the disk and undergo inward type-II migration in < 10 years if observed disk accretion rates apply to the disk as a whole...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008